Purpose: Traffic volume in empty container depots has been highly volatile due to external factors. Forecasting the expected container truck traffic along with having a dynamic module to foresee the future workload plays a critical role in improving the work efficiency. This paper studies the relevant literature and designs a forecasting model addressing the aforementioned issues. Methodology: The paper develops a forecasting model to predict hourly work and traffic volume of container trucks in an empty container depot using a Bayesian Neural Network based model. Furthermore, the paper experiments with datasets with different characteristics to assess the model's forecasting range for various data sources. Findings: The real data of an empty container depot is utilized to develop a forecasting model and to later verify the capabilities of the model. The findings show the performance validity of the model and provide the groundwork to build an effective traffic and workload planning system for the empty container depot in question. Originality: This paper proposes a Bayesian deep learning-based forecasting model for traffic and workload of an empty container depot using real-world data. This designed and implemented forecasting model offers a solution with which every actor in the container truck transportation benefits from the optimized workload.
translated by 谷歌翻译
探索搜索空间是几十年来吸引研究人员兴趣的最不可预测的挑战之一。处理不可预测性的一种方法是表征搜索空间并采取相应的行动。特征良好的搜索空间可以帮助将问题状态映射到一组运算符,以生成新的问题状态。在本文中,已经使用最知名的机器学习方法分析了基于景观分析的功能集,以确定最佳功能集。但是,为了处理问题的复杂性并引起共同点以跨领域转移经验,最具代表性特征的选择仍然至关重要。提出的方法分析了一组特征的预测性,以确定最佳分类。
translated by 谷歌翻译
联邦学习(FL)是利用属于患者,人,公司或行业的敏感数据的合适解决方案,这些数据在刚性隐私约束下工作的难题。 FL主要或部分地支持数据隐私和安全问题,并提供促进促进多个边缘设备或组织的模型问题的替代方案,以使用许多本地数据培训全局模型而不具有它们。由其分布式自然引起的FL的非IID数据具有显着的性能下降和稳定性偏斜。本文介绍了一种新颖的方法,通过增强图像动态平衡客户端的数据分布,以解决FL的非IID数据问题。介绍的方法非常稳定模型培训,并将模型的测试精度从83.22%提高到89.43%,对于高度IID FL设定中的胸部X射线图像的多胸疾病检测。 IID,非IID和非IID的结果,联合培训表明,该方法可能有助于鼓励组织或研究人员开发更好的系统,以获得与数据隐私的数据的价值不仅适用于医疗保健,而且领域。
translated by 谷歌翻译
深度学习;它通常用于在生物医学领域的图像上分割过程。近年来,已经观察到,与图像划分的其他方法相比,使用深度学习对前列腺图像进行的划分程序增加了。看文学;可以看出,分开具有深入学习的前列腺图像的过程是诊断和治疗前列腺癌的重要步骤。出于这个原因,在这项研究中;成为未来分裂操作的来源;研究了从磁共振(MRI)成像装置获得的前列腺图像上的深度学习分裂程序。
translated by 谷歌翻译
Large-scale pretraining instills large amounts of knowledge in deep neural networks. This, in turn, improves the generalization behavior of these models in downstream tasks. What exactly are the limits to the generalization benefits of large-scale pretraining? Here, we report observations from some simple experiments aimed at addressing this question in the context of two semantic parsing tasks involving natural language, SCAN and COGS. We show that language models pretrained exclusively with non-English corpora, or even with programming language corpora, significantly improve out-of-distribution generalization in these benchmarks, compared with models trained from scratch, even though both benchmarks are English-based. This demonstrates the surprisingly broad transferability of pretrained representations and knowledge. Pretraining with a large-scale protein sequence prediction task, on the other hand, mostly deteriorates the generalization performance in SCAN and COGS, suggesting that pretrained representations do not transfer universally and that there are constraints on the similarity between the pretraining and downstream domains for successful transfer. Finally, we show that larger models are harder to train from scratch and their generalization accuracy is lower when trained up to convergence on the relatively small SCAN and COGS datasets, but the benefits of large-scale pretraining become much clearer with larger models.
translated by 谷歌翻译